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Abstract

‘1’he effects of random accelerations on the rncasureme]lts  of quat~titics  in the

vicinity  of the liquid-gas c.rit,  ical point arc consiclcrcd WIICI1 the system is in a

]llicrogravity  environment. g’hese accelerations couple to the order IJara Inctcr

througil  the transverse component of tl]c velocity field, WIIOSC dynamics are

also governed by critical point properties of the liquid-gas syskm. ‘l’he action

of the accelerations is amplified by tile singular static arid dy[ianlic response

of the gas-liquid syst,cIn.  A general fornlulationj based on “hlodcl  11” critical

dynamics allows for the calculation of a variety of quautitics.  It is found

that the random accelerations expec~cd ill a rnicrogravity  cilvirorlznent  will not

compromise the accuracy of any experiment that is currc]ltly  envisioned.

‘J’ypcsct using lU3V’1~~
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I. INTRODUCTION

Space- basccl laboratories present the rcscarcllcr with an cnvirolln  ]cnt in which the pr-oper-

tics  of some critical point systems of current interest call bc investigated with unprecedented

accuracy [1]. Among the most important of those  systems arc liquids having a critical or

multicritical  point. It has been known for a lo]lg tilm{ that tllc variations in the pressure

of a liquid sample duc to the earth’s gravitatiollal  attl action impose the ultimate limit on

the accuracy of arly mcasurcmcnt of critical point properties in an earthbound laboratory

[2]. q’hc effects of gravity arc cspccial]y  pronounced for the very important and widcly-

studicd  liquid-gas critical point of a single chemical cc)mponcnt,  w]lich corresponds to the

termination of tllc co-cxistcncc  curve separating the liquid and val)or  phases [2]. For this

systcm,  the order parameter couples directly to the gravitational field. Given the formal

corrcspondcnccs  that follow from the universality of critical behavior, the liquid-gas critical

point is cffcctivcly idcntica]  to that of a uniaxia] fcrrornagnct whose Curie-point behavior

has been disrupted by the action of a spatially varying, extcrllally-gcncratcd  magnetic field.

‘1’he potential benefits of improved mcasurcmcnts of critical point properties in sirnplc

gas-liquid systems arc profound. ~’hcsc systmns represent the first discovered example of

critical point  behavior [4]. ‘1’hcy arc also exemplars of a broad class  of systems. q’lle

exponents that quantify the critical behavior of sinlplc gas-liquid systems should also apply

to analogous t)chavior  in uniaxial  fcrro-  and antifcrloll)agncts  at tlic  Curie and N6c1 points,

two-component  mixtures at  the dcmixing  tra]lsitic)n, a n d  tlic ]sing  ]nodcl  [5].  This last

systcm  is, in itself, extremely important. ‘Tllc  lIlathcnlatical  silnl)licity  of the lsing  nlodcl’s

IIamiltonian  allows for relative case of renorxrlalization-group-based analysis [6], Monte Carlo

simulations [7] and high-and low-temperature expansions [8]. IIcc.ausc  of this, the prcdictcd

values  of the critical exponents of the simp]c  gas-liquid universality class  in three dimensions

arc the most prccisc  and reliable of all non-exact t,hcorctical rcsulls  in the study of critical

phcnorncna.  An accurate cxpcrimcntal determination of the critical properties of a simple

gas-liquid systcm rc])rcscnts  a stringent, possil)ly  dccisivc,  cxpcrimclltal  test of some of the
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most important theoretical models and techniques- --as well as some of the most influential

ideas about the behavior of interacting systelns–  -that IIavc been developed in the past four

decades.

~’llc cnvironrnent  in a space-based laboratory is not entirely free of gravitational effects.

g’here  arc, of course, the forces duc to the gravitational interactions bctwccn all the matter

on the space craft .  Much more importantly,  rwldom  acccleratiolls,  which arc unavoidable ~

in an orbiting laboratory, give rise to effective gravitational-lilw  fc}rccs. Unlike the earth’s

gravitational field these forces fluctuate in time, but they nevcrtllc]css  can act to limit the

ultimate precision with which critical point rmmsurcmcnts  can be performed. In this paper,

wc present the results of a study of the effects of fluctuating linear and rotational accelera-

tions on the static and dynamics of a simple gas-liquid system in the ilnmediate  vicinity of its

critical point. ‘l’his study represents the completion of work reported 011 previously [9]. ‘I’he

approach utilized here is to hc contrasted with the calculation of l’crrcll  [1 O], who utilized

an approxin)atc,  self- consistcllt  fluctuation-  dissil>ation  relation to obtain predictions for the

effects of random linear accelerations on the wave-vector-dc]mldcl]t thcrrnal  conductivity.

Wc develop an approach that yiclcls  a larger number of ] csults,  albeit ill the long-wavelength,

low-frequency limit.

g’hc results of this theoretical al]alysis  will bc applic,d to the 311c critical point, which is,

now being considered as a model liquid-gas systcm  for S1 udy in a space environment [1 I]. WC

find that tllc ra.ndoln  motions  cx~~ectcd ill a microgravity  cnvirol)nl(:l]t  will not compromise

the accuracy of any forsccablc  cxl)crimcnt.

I 11. PERTURBING FORCES DUE TO RANDOM MOTIONS OF TIIE

APPARATUS

q’hc critical dyllanlics  of a liquid-gas system art: control led by the transverse (i.e.

divcrgcncc-free) component of tllc  velocity field. An essential stage ill the assessment of

the effects of small random motions on tl]c critical proj)crties  of a liquid-gas system is, thus,
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I
to determine the exact manner in which random linear accelerations a)ld rotations couple to

the transverse velocity field. We will find that there alc four SUCII  coul)lings,  each of which

can produce an effect on the critical point properties.

As our first step, however, it is ncccssary  to consider the effect  of small fluctuations in

the linear velocity of the system on the purely longitudinal (i .c. irrotational)  velocity field.

If a container suffers only linear accelerations then the lnost rcaso]lablc  assumption that one

can make is that the fluid contained in it translates with the container as if it were a solid

body,  Ilowcvcr , near its critical point a fluid is highly  comj)rcssiblc,  and because of that

its velocity can vary considcrab]y  from point to point. F’urthcrmorc,  the systcm has normal

rnodcs that can, in principle, be rcsonant]y  excited if variations ill tl]c  container’s motion

have the proper frequency. Such a resonant excitation of modes could, in principle, lead to

a tremendous amplification of the effects of small accelerations. q’llis issue is addressed in

the next Section. 11.csona,nt  excitation of norn~a] moclcs dots IIot occur in the parameter

range of interest in this study. IIowcvcr, bccausc  of the nonvanisl]il)g  compressibility of the

liquid-gas systcm, Inodcs  will bc nonrcsonant]y  cxcitecl. ‘I)he lowest-lying modes will bc the

most strongly excited by this mechanism.

l,inear accclcratiolls  onzy coup]c  directly to ihc lorigitudillal  colnponcnt  of the velocity

field. q’here arc two ways in whi,cl) the purely longitudinal inertial forces induced by linear

motion of the c.ontaincr  indirectly perturb the transverse colnpollc]it  of the velocity field.

I Irirst,  the cffcctivc gravitational force can have a transverse conllJollcllt,  as the result of

I fluctuations in the mass dcusity  p(x,  i). In “fouricr slmce” this c.olnl)oncnt  can bc written

as

(2.1)

I where a(i) is the fluctuating lillcar  acceleration of the container, and the projection operator

T, with clclncllts 7~j(k)  = 61j – kikj/k2,  selects  the transverse IJart  of the inertial force

I a(t)p(x,  t). ‘1’his  is the coupling tl]at gives rise to th(’ pcrturbatio]ls  calculated by Fcrrcll

[10]. A scco,~d  coupling of tl]c linear ac.colorations to the tra]isvcrsc  velocity is via the
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convective contribution, (v . V)v, to the total time derivative of the velocity in its equation

of motion  (see Eq. (A8c)).  We begin by writing

(V. v)v=:vv’–vx(v  x v ) .

l)ccornposing  the velocity field, v,

wc find tl]at the only contribution

non-zcero  transverse component is

L

into transverse and longituclina]  components,

to the convective part of the tirnc derivative

v/ x (v x Vt).

~’hc transverse contribution to the cffcctivc  force associated with l’k I. (2.3

in fouricr  space. It is

F2(k,  i) = --v,(k)(vl  o k) .

(2.2)

vi  and v!,

that has a

(2.3)

can be extracted

(2.4)

]mplicit  ill this result is the assumption that the longitudinal  com~mncnt  of the velocity field

is cficctivcly constant throughout the container.

l{andom  rotations of a containel

system contained tl]crcin.  ‘1’hc  most

form of such forces is

will also give rise to effective forces on the liquid-gas

important of these arc the Coriolis  forces. The general

FC=2Q XV. (2.5)

in this case there is direct coupling to the transvcmx  component of the velocity field. The

transverse component of the Coriolis  force given by 13q. (2.5), with v = Vt is, in fourier

space,

h’ina]ly, the componcl]t  of the rotational velocity Q that is trallsvcrsc to both vt(k)  and

vi(k) -- denoted by Q1---  couples the longitudinal and transverse velocity fields. ‘1’llat is, the

transverse velocity field responds to an effective force givcll by
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Fqa = 2($21 x V()> (2.7)

whi]c  the longitudinal velocity field is subject to the cflcctive force

F4~ = 2(~L X V~). (2.8)

Note that the force F1 can be thought of as ‘(direct” , ill that it does not depend directly on

the velocity fields. By contrast, the forces F2, F3, and 1{’4=,46 which have a linear dcpcndcnce

on v, arc “parametric” in form.

As it turns out, the force Fl, which is central to l’crrell’s  calculations, dots not play a

role in our approach.

111. MOTION OF FLUID IN A VH3RATINC4 CONTAINER

‘1’hc next step in the assessment of the cfrccts  of random lnotiolls  of a container is

to detcrlninc  tl]c  response of tllc fluid to those motions. ‘1’o sill}plify the discussion of

the effects of Iincar accclcrations, we assurnc  a one-di)  ncnsional  geometry. ‘1’he l inearized

hydrodynalnica]  equations that co])trol  the evolution of the velocity field V(Z, i) and the

mass density p(x, i) are

where pc is the equilibrium fluid density, taken to be the critical dcllsity, /3s is the iscntropic

compressibility and v is the viscosity. IU terlns  of tile shear  viscosi ty,  ~?l, and the bulk

viscosity, qz, ~ = 711/3  + ?12.

If wc write

then l’;qs.  (3.1) and (3.2) become
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ikAp
—iuvQpQ = ———- — I/quo,

POPS

iwAp = ikpoV().

These two equations imply the following dispersion re]:ition:

w’-~ iwk’q
-t- –;- “ 0.

POP,

Solving for the wave vector k:

L
_—— —_ (u/c)’

—
1 –ilAx-

zJ(L, i.) = V(–l,,  t) = vcosd,

then tllc  C.ocfllcicnts  in Eq. (3.9) lnust  take oIl the following values

v—-.———— —
A  = ‘) = 4 cOS(k}~~,  + ik~l)’

c=])==
v

4 cos(k~j  – i~;]z~ ‘

‘(

(3.4)

(3.5)

(3.6)

G k~ + ik~. (3.7)

in the equation above ~ = ~.~ is the rclaxatiol]  time alld  the undatllpcd  sound velocity c is

given by

c =  l/ J&/3s. (3.8)

SUppOSC, now, that wc arc intcrcstcd iIl thc behavior  of th~  velocity field inside a stca~ilY

vibrating container. ~’hc most gcrlcra]  so]ution  to t])c o])e-dimensiol)a]  equations of motion-

thc time-dcpclldcncc being sinusoidal with angular  f] cqucncy  w- is

V(Z, i) = [AeikRx-k’x + Be-’kF{z+k’z]  C-i’”f + [Cc- ‘knx-k’z + ~~c’k’’z+k’z] C’Wt. (3.9)

If wc ilnposc  tllc followil)g  boundary collditions  0]1 the velocity field at the ends of the

container, at x = H.,

(3.10)

(3.lla)

(3.llb)



The velocity field inside the container (–1, < x < 1,) is

[

cos(kRx + iklx)
v(z, t) = VW e–i”t —-—-— —

1cos(kRL  +  2k}/L)  ‘
(3.12)

The denominator in Eq. (3.12) has a resonant form in the vici]lity  of cos kRL = O, or

kn = (n + 1 /2)T/L. To explore the resonant response in greater detail, we evaluate the

integrated weight of V(X, i):

[

—iwi

=  2V!R ~—
sin kfll, cos kl~L -{ i sinh kll. COSII kIL-— —-— —

kR + ikI 1
(3.13)

COS2 kR~ + Si11h2 kII,

If LOT <<1 in the vicinity of the resonance, then the amplitude of t}lc  velocity goes as

W2TL/C

@L/c -  ~,+ 1/2)~)2 +  (cJ2T1/C)2)  “

(3.14)

Now, the linear dimension of a container in a the kind of low-tc]ncpcraturc  experiment

likely to be performed in a microgravity  environment is R 10 cln. “1’lIc  wavcvcctor  kr{ of the

lowest-lying resonant mode is, then, given by kl{ N 27r/~?O cm =: 0.33 cm. ]n the case of ncar-

critical 311c, sound in the relevant frequency ra,rige propagates adiabatically, and its speed

is equal t,o 3.2 x 104t005711  Z, where t is the reduced tc)npcraturc  [f := (7’ – 7~1itical)/TC1iticd]

(see q’able 111). ‘J’IJc frcquc~,cy,  U, of t}lis  mode is ,  tl]us,  equal  to ~ 1 x 104t005711z.  If

t = 10 - 7, tllcIl  w = 4 x 10311z. “1’hc width of tl)c  rcsollancc at this frequency is  equal  to

Q = wT/2 = j/Aj with r = 3.8 x 10-]2t-01’iscc.  At t = 10-7,  u7- s 2 x 10 - 7,  so the mode

is very well-defined. As the characteristic frcqucmcics  of random lillcar velocities in a space

environment arc cxpcctcd to be in the tens of IIcrtz [1 2], rcsonallt  excitation of acoustic

modes must bc considered un]ikcly.

The frequency at which the container is vibrating in a space cllvironment  is small c o m -

pared to the frcquclicy  of the lowest-lying mode, and wc can cx])a]ld  the expression in Eq.

(3.12) with respect to kf~. ‘lhe velocity is givell  by
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‘.

v(xJ) % Ve-iw~
[ 1
l–;k~(z2-..  L2) .

III the frame of rcfcrw~ of the vibrating contai]lcr,

v(z, J5) + Ve–iWt~k~(L2  – 02).

(3.15)

tf,

(3.16)

In the ccntcr of the container (x == O) the velocity has a magnitude  equal to V( 1 + ~kltl.2),

so tJ]e velocity of the fluid in the reference frame of the container is Vk~J,2 = V(UL/CS)2.

The quantity Cs is the adiabatic speed of sound, as given above.

l’hc above results allow us to check immediately fol the density flucutations  induced by

vibrations in the container and the rate at which heat is generated as the result of viscous

damping of the fluid’s motion.

The small fluctuations in density associated with tile velocity variation above arc given

by llqs.  (3.2) and (3.16):

Wx v
~P(%~) = ipc--@”.

s

The lncan square variation in the density is

2W2X2V2
6p(z, w)6p(x,  –w) == pc-”@-.

s

Averaging over an cnscmblc  of random vclocitics:

(3.17)

(3.18)

(3.19)

In the above I’;quation,  (6p(x,  w)6p(x,  –w)) is the spectral density of mass density fluc-

tuations and (v(w)  v(–u)) is the spectral density of random contai]icr  velocities. Using

(a(w) a(–w)) = u2 (v(w)  v(–w)), where (a(w) a(--w))  is the spectral dcllsity  of accclcrations,

wc cnd up with

(6p(x,  ”)6p(x, -Cd))= fg (,,(u) a(-”)) .
.s

(3.20)

The root rncan  square of density fluctuations k, then,
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(3.21)

Thus, the fractional variation in density due to random accelerations of the container is

= & f (a(u) a(–ti)) dw. We can also utilize the rwsults  for the velocity in a vibrating

container to estimate the rate at which the temperature will rise as a resul~  viscous damping

of the induced velocity fluctuations: the end result is

(3.22)

~,

IV.  RANDOM LINEAR AC CIII.ERATIONS ANI)  TR,ANSPOIW  COEFFIC>NTS

Bccausc  of the couplillg  of longitudinal velocity fluctuations to tllc transverse velocity

through the convective contribution to the total hydl  odynamic time derivative, (see Eq.

(2.4)), random vibrations of the container will alter transport coefficients, most notably the

thermal conductivity, K and the shear viscosity T/l. The changes ill i I)c transport cocfllcicnts

due to mode-coupling can bc calculated with the usc of a modification of the standard

perturbation-theoretical formalism. l’he diagranlmatic  notation is sulnmarized  in Fig. 1. It

is an adaptation of the approach appropriate to critical dynalnics  i]] which there is a single

fluctuating field, characteristically the energy density. ‘1’hc orclcr ~Jaranlctcr  propagator in

the case at hand is more complicated, as wc lnust  take into accoul]t fluctuations in both

the energy density and tl]c  n]ass  density. The scalar order ~Jaramctcr  is a combination of

those two fields. ‘]’hc undcrlyil)g  dynamics arc outlined in Appendix A. ‘1’llc order parameter

propagator is obtained by invcrtilIg  the response equations

Kk2 wk2
c~(k, w)[–iw + —-2a(k)] + p~(k, w) —h(k) := j-c

P: P:
ikzb(k)pc 22k2c(k)pc 7jk2

cl(k, bj—w— +  pl(k, w)[--~w +  —“-; —  +  -;;”1  ‘:’ f,.

(4.la)

(4.lb)

~’hc solutiol]  is
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( Cl(k, w)

fl(~, w)

(4.2)

The g’s in Eq. (4.2) arc the components of the order parameter propagator, and the function

D(k, w) is given by

(
D(k, w )  = –iw –

22k2c(k)pc qkz

) (

_iw + 2Kk2a(k)
—  +  ~c -

)

2Kk4b(k)2. . . . (4.3)
w f: Wpc

By contrast, the transverse velocity propagator GT(k, w) has tllc skldard  form

1
GT,(k,  w) = —-—-—  -.

–-iw  + ql k2/pC
(4.4)

All quantities in the above equations are defined in A~jpendices  A, 11 and C.

‘1’hc coupling of vibration-induced fluctuations in tllc longitudilla]  velocity to the trans-

verse velocity

[13,14]

‘1’his  insertion

leads to the follo\villg  insert ion on the iransversc velocity propagator line

AX(k, q)) = / dW’~; (?J(W’)V(-W’)) GT(k,  w + w’)

/
‘i--–--——— Ch’–  , (V(LJ)V(-LJ))  . (4.5)

–2(W + W’) + ?)1k2/p,

is illustrated in lJig. 1. Thc quantity  kll is the conlponcnt  of the wave vector

k that is para]]c] to the longitudinal vc]ocity  fluctuations. ‘1’he olic-loop  correction to the

thermal conductivity is of the form shown in Fig.  2. After some reduction, onc finds  for the

leading order contribution to the thermal conductivity

/’

(4.6)

where a’(k) = a(k) — b(k)2/4a(k)c(k) is the static cncr~)y density susceptibility. Furthermore, ~,’

as discussed in Appendix 11, a(0) a c~l. Utilizing an ornstein-Zerllickc-type  form for a’(k)

(a’(k) = (2+ k2) and carrying out the integrations over the wave  vector p, wc arrive at



the following correction to the thermal diflusivity  to lowest nontrivial order in the random

linear motions

()/1 k~7’ p.  3

6~T = ‘—
1

dw’ (a(w’)a(–u’))  $f~~–—,—
- - - [

1

9X pc
. -—. 1-( , (4.7)

c: 1  +  ?w’pc(2/ql  J–”2w’pc/qlK

where the thermal diffusivity  is given by

r]T ~ —K---,
l;cppc

(4.8)

and the quantities in Eq. (4.8) are defined in g’able I.

The renormalization of the transverse velocity propagator also leads- quite directly---to

results for the alteration of the effective shear viscosity. ‘l’he fractional change in VI follows

from consideration of the insertion AX(k, u). Setting u = O, wc fh)d

AE(k, O) ~ #2 J dw, (a(u’)a(--u’)) W’21.4— — . ——
qlk2/pC –  iw’ C:

= +L? J (a(u’)a(-w’)) ql k’ W’21.4

(m k2/PiF”z~ z c; “
—-——— (4.9)

Taking the limit k -+ O, wc sec that AX cx k4, which rmans that random li]lear  accelerations

of the container lead to no change in the effective shear viscosity.

V. EFFECTS OF RANDOM ROTATIONS ON ‘l? RAN SI’OIUl’  COEFFICIENTS

AND TIIERMODYNAMIC  I’UNCTIONS

Wc will consider separatc]y the two forcing terms cstablisllcd  ill Section II:

A. Rotations that couple the  tra:lsvcm(:  velocity field to itself

~’hc insertion on the transverse propagator line associated with the force F4. is illustrated

in Fig. 1. lt leads immediately to the insertion oIl the transverse velocity propagator line

shown in Fig. 3. ‘1’his  insertion has the form

—
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A2(k, w) = –] dW’
(QII(W,,(-4)  ?j,k’

/

(WY4,(-4)—.— ==-. —
–i(w +  w ’ )  +  ql k2/pC p, ‘w’~;”;::fi~ + (?), k2/P.)2

q, k2

J Jwo,,(+’))+— —. .—. .
Pc WQ

(5.1)

The quantity Qll is the component of the rotation vector fi parallel to the longitudinal

velocity field. The final Iilmit  above is at w = O and as k ~ O. YJre have, as the fractional

change in the shear viscosity,

J JWJ)Qll(-~))—. —. —--—
w~

(5.2)

]n the equations above (QII(cJ)QII(-w))  is the  spectral density  of random rotations.

IIccause  of the way in which the one-loop corrcctiol~  to the thermal conductivity depends

on the shear viscosity (see Eq.  (4.4) ancl Ref. [14J), t}lc fractiol~al  cllarlgc  in K or 1~7, is the

same as the fractional shift in q]. Note that both  shifts are indcpcndcnt  of temperature and

other parameters.

Il. R.otatiol~s  tliat COU1)lC  tl~c transverse an(l longitudi)~:tl  velocity fields

‘1’hc inscriion  on t}lc  transverse propagator is as illustrated in l’ig. 1. Using Eq.  (4.2)

and the relationship (Al ) bctwccll the Inass  density and the longitudinal velocity field, we

have for the alteration of the transverse velocity field propagator

–i(W+LLJ’)  +2 Kk24k)/#:
x (-i(w+w')+k2(2ic( k) Pc/(w+-w')+fi/P.  ))(-t(w+w')+2a(  Lm::z3b7F)2/-(i+  w')Pc

—.=-

(5.3)

Because  of the coupling bctwccl)  the two velocity fields, the change in the shear viscosity is

now proportional to tl)c  viscosity appropriate to the longitudinal velocity ficlcl.

l’he a l t e r a t i o n  a b o v e  i n  the s h e a r  v i s c o s i t y  y i e l d s ,  as i]] t h e  p r e v i o u s  S u b -

section, a  p e r t u r b a t i o n  i n  t h e  tl~crmal  c o n d u c t i v i t y  t h a t  i s  p r o p o r t i o n a l  t o

(~/Pc)  .( do’ ((~~(w’)~1(-u’)) /W’2).
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Finally, there

velocity insertion

the propagator

is an insertion in the propagator g,c(k, w) analogous to the transverse

illustrated in Fig. 3. l’his insertion IIas the following first order effect on

J dw’g,p(k, w) GT(k,  w + d)gp, (QL(w’)Q1(--J)) . (5.4)

After some reduction, we find for the effective insertion

(5.5)

the above being valid in the limit of small (k, u). This insertion does not have the form of

a thermal conductivity, in that it dots not vanish as k2 in the limit of long wavelength.

!l’he final contribution above to transport cocfflcicnts  also produces an alteration in

thermodynamic susccptibi]itics. q’his  is bccausc  of the relationship between the dynamical

and thcrmodynamical  response inherent in the system of equations discussed in Appendix

A:

‘1’hc fractional shift in cp is

1 a(k) b(k)2

Ems(a(k) – f5(k)2/(4”~(k)c( k)))c(k)pc /
- – - - —  dJ’ (o~(bl)ft~ (-J)) .

(5.6)

(5.7)

l’hc limit k + O is catastrophic bccausc of the first term in (5.7). ‘1’hc combina t ion  in

the middle approaches ratio cP/(cvC~)  in that limit, and the integral over the spectrum of

random rotations is, of course indcpcndcnt  of k. For a bounded systcm, ill which there is a

natural lower limit to k, a finite correction to cp results from (5.’/).

l’here is no change in the spcciilc  heat of the system associated with

to 6T, arising from one-loop corrections to that quantity as calculated in

bccausc cancclling  vertex corrections arc also gcmcratcxl.

the contributions

previous Sections
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VI. EFFECTS OF RANDOM MOTIONS ON A 311e  C; R.lTICAL  POINT

EXPERIMEhTT

As an application of the results derived in the previous Sections, we will calculate the

effects of random linear and rotational motion on the properties of 311c in the vicinity of its

liquid-gas critical point. This is with an eye to establishing the limits placed on microgravity

critical point measurements by vibrations in an orbiiing

thermodynamic functions and transport properties in the

is incomplete. l’here is, in addition, some variahilit>r  in

in a space-based laboratory, and no measurements l~ave

environ merit. Ilccausc of all this, the calculations reported in this Section will necessarily

involve ap~~’oraxi Inat ions, and results will be accurate as orxlcr-of-lnagn  itudc estimates at

best. Ncvcrthclcss,  wc find that the eflccts  of ralldoln,  linear accclqartions  arc negligible

laboratory. Information on the

vicinity of the 311e critical point

the data on linear accerclation

been ]nadc of rotations in that

in any f~,sccablc  critical point experiment. In the case of rotations, suficicnt  unccrtaintly

exists that one cannot rule them out as a perturbing cff{:ct,  in tllc ahscncc  of an experimental

determination of their magnitude.

,’.

,,
,,,

‘.,

A. I.inear  accelerations

l’irst,  wc will estimate the density fluctuations and the tclnl)crature  drift, using the

results obatined  in Section 111. Using Eq.  (3.21 ) and \ralucs in ‘1’able III wc find

m
O

_——.  .— .—

== 9.77 x lo-g< (a(u)  a(--u)) dw x t--a. (6.1)
Pc cm

!l’hc. exponent  a in Eq. (6.1 ) is equal to 0.11, so the tcmpcratum  dcpcndcnce of the left

hand side is not particularly strong.  We have assumcxl  a co]itaillcr with a linear dimension

I,E 10 cm. ))ata from experiments alrcacly  pcrfor]]~cd  on shuttle vibratiorls  indicate t}lat the

largest sources of “g-jitter” give rise to accelerations of order I cm/scc2, with characteristic

frcqucncics  of the order of 10 Ilz [12]. All this indicates that vqilations  in the density will !

be no more than a part in 1 07 down to reduced tcmpcraturcs  of 10-8.
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Next, wc calculate the thermal drift due to viscous damping of the vibration-induced

motion of the fluid. Inserting results from Table 111 (we have utilizccl  the amplitude of Cv

as an estimate of the amplitude of CP) we find

dl’
z=

] .5 x ]0–27:EiU(2–r)–Zv)  -?d
/

W2 (a(u) a(–u)) dm. ‘ (6.2)
Scc

This effect is absolutely negligible.

Finally, Eq. (4 .7) allows us to sec what effect random line.m motion has on the thermal

diffusivity.  At very low reduced temperatures the correlation length ~ dominates all other

lengths in the integral and we find

1  k~T 1.4——— OJ~ 3( U2 (a(u) a(- u)) du
97r pcD1’ g 1]1

7.56 x ]()-24i--  U(3-mA)-2CY+3  Z,,
p(a(~)~(-o)) dw (6.3)

The power of the rcducccl  temperature is x –1 .5. At no experimentally achievable value of

t will the above effect bc of any importance.

Il. Rotations

Ilcrc one is hampered by lack of information cc)ncerning  tile random rotations on the

spacecraft .  IIowcvcr, it is possible to colne  up with a very roug]l  cstilnatc of the spectral

density, (Q(u) Q(–w)).  If wc assume Q(w) N v(w)/L,, where L, is the size of the shuttle,

which wc take to bc w 10 m, then the effects of Qll of transport l)rol)crtics,  as given by Eq.

(5.2), arc

/

du(a(w)a(-w))-——- (6.4)
. W41.;

If wc rcplacc  w in the intcgrand  above by IOIIZ and the intcgratcc]  spectral  densi ty of

accelerations by 1 c1n2/scc4 wc arrive at a fractional effect of Qll of a l)art in 1 O] O. Ilowcvcr

this estimate is cxtrcmc]y crude, al}d there my be crrols of a few orc]crs of rnagnitudc.  The

same estimate applies for the effect of fll on the shca  r viscosity- assuming that ql and ~

arc C1OSC in magnitude.



As for the conscqucnccs  on

in both llz. and Cp

611T ~cP =——
11~  =  Cp

%

The quantity L is 13q. (6.5) is

the thermal response of QL, wc find for the fractional change

J=12 did (!d*(kJ)~.L(-  ‘))
Cv c:

10-7~ec2i-u(2-~J J dw (f~L(W)~L(- (AJ)) . (6.5)

the  size of the contairmr  of 311c, which wc take to be 10 cm.

Once again, to within the very large errors resulting from our uncertainties regarding the

spectrum of rotations, wc find that there is no observable effect at an achievable rcduccd

temperature oft = 10-8.

VII. C O N C L U S I O N S

Wc have developed expressions defining the effects of fluctuating linear and rotational

accelerations on static and dynamic phenomena nca~ a liquid-gas critical point. These

expressions arc valid in the long-wavelength, low- frequency limit. Tl]c  results of this analysis

were applied to the properties of 3He in t}lc  vicinity of its critical point. Using g-jitter data

from previous space shuttle flights, wc find that random linear rrlc)tions  cxpcctcd  in future

microgravity cxpcrirncnts  should not affect mcasurcmcnts  of critical point phenomena to

rcduccd tcrnpcraturcs  of 10–8, At this time, mcasurcrncnts of random rotational motions in

the space shuttle arc not available. IIowcvcr,  using cstirnatcs for t})c spectrum of random

rotations wc also find that there will be negligible effects on critical point phenomena.
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APPENDIX A: HYDRODYNAMICS 01’  A SIMPLE LIQLJID-GAS  SYSTEM

NEAR TIIE CRITICAL POINT

The dynamics of a simple liquid-gas system consists of the following  three equations:

●

●

Conservation of mass, which relates the mass density, p(x, i ) to the mass current,

j(x, t) = p(x, t)v(x, t)

(Al )

Conservation of (thcrma]) energy-–under the pI ocesscs  of convective transport and

thermal diffusion

()(9$I “
__+y7. : =  N:; -1- qx, t). (A2)

~’he expression 6~/Jq on the right  hand s;dc  ef Eq.  (A2) is the fu]]ctional  derivative of

the total IIclmholtz  free energy of the systcm,  II’. with respect to q(x, t), the thermal

energy per unit volume. The transport cocfficic]]t  K is the thermal conductivity. The

last term on the right hand side represents the rapidly-varying contributions to thermal

transport that give rise to fluctuations in the cnel gy density. ‘J’hcse  terms, which have

a “white noise” spectrum, satisfy the following version of the fluctuation-dissipation

relation in real space:

(o(x, t) El(x’, i)) = 2k~l’’Nv26(x  - X’)fi(i - t’), (A3)

or, in wavevcctor/frccluency  space,

(O(k, u) O(k’, w’)) = 2kBTd26(k  + k’)d(w  + w’). (A4)

l~quation (A3), or (A4), helps insure  the illvariance of tile  I]oltzmann  d i s t r i b u t i o n

exp( —~’’/kBT)  under the action of the system’s dynamics.

18



● Finally, there is the equation expressing the conservation

dynamical systcm:

of nlolncnturn  in the hydro-

= V. b’+<(x, i). (A5)

The first term on the right hand side of Eq. (A5) is the viscous damping force. In

more detail,

T h e

term on

velocity

coefficients q] and q2 are, respectively, the shear al~d bulk viscosities. The final

the right hal~d side of the equation represents 1*I]c fluctuating  forces that act on the

field.  ‘1’hcse forces satisfy the fluctuation-dissil)ation relation

which, again helps ensure that the dynalnics  leave the lloltzmalln  distribution invariant.

‘1’he conse rva t ive  contributio]ls  to the equations of mass, cllcrgy  a n d  m o m e n t u m

conservation- contained on the left hand sides of F.qs. (A 1 ), (A2)  and (A5)—-also  preserve

the lloltzmann  distribution, by leaving the total free cjlcrgy  illvariant.  ‘1’hcsc equations thus

form a dynamical system which encompasses both tht macroscopic. ]Iydrodynarnics  of the

liquid-gas system and the coarse-grained, thermally-driven fluctuations associated with the

microscopic exploration of phase space mandated by tile crgodic  hypothesis.

Although the parameter set p(x,  t), j(x, i) and q(x, i) is the most natural basis for the

derivation of equatiolls  that satisfy all the conservation laws and invariance principles, fur-

ther dcvcloplnent  of the dynamics, especially as they al)ply  in tllc ilnlncdiate  vicinity of the

critical point, is greatly simplified by replacing thcrn]al  energy  clcnsit, y and mass current

by thermal energy per unit mass, C(X, i) = g(x, i)/p(x,  i) and tllc velocity field, V (X , i). In

terms of the new variable set the equations for mass, energy and lnolncntum  conservation

are as follows:
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13p
~+v. (pv)==(l (Ass)

a< ~ 1 6F

Z
+V .V6 = ~-v ----- -t- $3 (ASb)

P p tic

av

[

“ 6F
~+(vo D)v+; pv;.

1
~-vc == :V”z+ :& (A8c)

This set of equations can be Lhougllt  of as “model  H“ critical dynan]ics  [13,14], extended to

include non-critical dynamical behavior of the longitudinal component of the velocity field.

Now, if the total free energy can be written

J’ ‘= p(dx)w) ~d~, (A9)

where j (p(x), c(x)) is a purc]y  local function of the mass density and cncr-gy  per unit mass,

then the tcrrns proportional to the derivatives of the free energy on the right hand side of

I?q. (A8c can be rc-arranged as follows:

__ve = ~vaf af ~,,(!iJ’ 6}’
Pv~  –  -& (?p 6’C

(

af

)

al aj
= v p— - f(p, f) -i Vj – -;--vp -- -#k

13p dp

(

Oj=
)

v p–- – j’(p, t) .
tlp

(A1O)

A straightforward set of thermodynamic arguments leads to the relationship

( A l l )

witli  }](p, c) tile local pressure. ~’bus, if the free energy dcmsity  is purely local, then the

macroscopic driving tcrl~~ in the momentum conservation equation is the gradient of the

pressure. In fact, nonlocal contributions to the free energy density, in the form of terms con-

taining spatial derivatives, play an important role in coupling the llcat- and mass-transport

equations.

APPENDIX B: LINEARIZED IIYDRODYh’AMIC;S  AND TIME SCALES

Linearized hydrodynamics describe the long wavc]cngth-low  frequency behavior of a sys-

tem close to equilibrium. As the equilibrium-1 state is one in wllicll tllc free  energy  is rnini-
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rnized, wc write

+~ ((PI> ~1)3) . (Bl)

The quantities PI and c1 stand for the differences between the mass density and energy per

unit volume and the equilibrium values of those quantities. If the free  energy density were

purely local, then the coefficients a(k), b(k) and c(k) would not vary with the wavevcctor,

k. q’hcrmodynami~s  and dimensional considerations mandate the fc)llowing  relationships

bctwccn  the cocffi$&lts  a(0), b(0), c(0) and sta]ldarcl  tllcrmodynan)ic  quantities:
\

PC40) = ~~ccv—. (B2a)

v (Q?v.)s
b(o) = –--~--– (B2b)

(B2C)

q’hc quantity cv is the specific heat at constant volunlc, and ~s is the adiabatic compress-

ibility. Standard thermodynamic formulas yield the following relationships:

a ( 0 )  (1 – b(0)2/4a(0)c(0))  =: j~~ (B3a)

i
c(0) (1 – b(0)2/4a(0)c(0))  == j~~, (133b)

whmc,  cl) is the specific heat at consta]lt  pressure and @f is the isothermal compressibility.

For a complctc list of the thermodynamic functions used in this IJalmr scc ‘l’able I.

Expanding l’;qs.  (A8) to first order in v, pl and c1 W( obtain, ill t]lc  wavcvcctor-frequency

rcprcscntation,

k . v(k, ~) . (B4c)

[ ] 1 prJ
–im(k, w) + ik [2c(k)p1(k,  u) + I/(k) cl(k, w)] := –;:kyv(k,  u) + k ~ql + qz
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‘.

This is the equation satisfied by a viscously-damped, adiabatic sound  wave. If we replace w

by the undamped solution to 13q. (137), the relationship in (117)  is replaced by

2k2Ka(k) ‘-–—  .— K ~k)pok = C,k,
P:

(B9)

where CS is the velocity of an adiabatic acoustic wave. ‘l’his relation is satisfied at sufficiently

small wavcvectors,  or sufficiently long wavelengths. ‘j’he second regime is defined by the

converse of t}le relationship above, i.

w

llcre the equation is, asymptotically,

e.

~ 2k2~a(k)

_zr–– “

[ 1
- 2cpok2  1-  ~~&j ~ O .

(1310)

(1311)

Now, the velocity is that of an isothcrma]  soulld  wave. Replacing w by the solution to the

undamped cquatiol],  we arrive at the a]tcrnate form of Ilq.  (1111)

___ J - [ ‘:7ZJ2k2~a(k)
> >  2c(/L)p(l 1 – -—:— : k E: qk. (1]12)

P;

llcre c71 is the velocity of an isothermal acoustic

wavcvcctor  is sufficiently large, or the wavclcnp$h

~’o find the final root of t}le  global dispersion

equation is a cubic with real, positive coefficients.

mode. l’his  relation will hold when the

is sufficiently small.

relat ion (116), set w = i[. The result ing

There is OIIC ma] root, and that real root

must be negative. If we anticipate that the ~ that solves the equation is of order k 2, f o r

small k, then the equation satisfied by ~ rcduccs  to

[=
2a(k)k2

[

b(k)z

1
— —  I –  – — - - - - – -  -I  0(k4).

P: 4a(k)c(k)
(1113)

This is the dispcrsiou  relation for thcrrnal conduction.

API’ENDIX C:  EFFECTIVE IIAMILTONIAN IN TIIE CASE O F  T W O  S C A L A R

FIELDS

IIccausc  there arc two fluctuating fields to take into account  ill  tl~c calculation of g-jitter

effects, the ‘ibarc”  cffcctivc  IIarni]tonian  is sonlcwhat  ]nore  colnplicated  than in the case of
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the scalar (i.e. single colmponcnt  order parameter) +4 model. In this Appendix we review the

features, particularly the critical behavior, of a model for simple gas-liquid critical behavior

that incorporates the effects of fluctuations in both the mass density and the energy density.

The most general case of a theory with two fluctuating scalar fields, one of which becomes

critical at a temperature 7L, has the following Ginzburg-I.andau-  \Vilson  expansion in the

immediate vicinity of the critical point:

}1 [z(q), y(q)] =  ~r’(q)x(q)x(-q)  +  +Fu >; Z(q]) . ..x(q4)
~ q,+... +q, =o

1
— ~ dq,)dqz)y(qs)  + ~4(M-cd-‘W’ql+...+q,=o ( c l )

q

All ncglcctcd  terms are higher order in the fluctuating fields x(q) and y(q),  and are irrelevant

in the Renormalization Group sense. In the vicinity of the critical tcn)pcrature,  the “bare”

quadratic coc~cicnt  r(q) goes to zero while A is a nonzero  positive constant.

Fluctuat ions in the cr i t ical  field z(q) will rcnormalize the cocflicicnts  r(q), U, v and A.

Because the quadratic terms influence the slow dynalllics  most stmng]y  we concentrate on

r(q)  and A. !l’hc ultimate form of r(q) is well-lillown. Asymptotically

r(q) ~ Q2-’f ((T – lJQ-ll”,q /Q) , (C2)

where v is the correlation length exponent--( m (7’ –-T. )-”–-and Q is an inverse length scale,

determined either by the correlation length (i.e. Q cx (-1) or by the internal wave-vector q

(Q m g). ‘1’his  is just standard correlation function scaling.

]“luctuations  in x(q) act on the quadratic term >~q Ay(q)y(  – cl) through the “correlation

bubble” (C(q) C(–q)), where

c ( q )  = —&Dol -  ql)~(ql).
ql

(C3)

Because this bubble has

of the ]sing  spin nlodcl-

the forln  of an energy-energy correlation full ctioll-- -in the language

-straightforward scaling collsidcrations  yield for the rcnorrnalized  A

A = Q2/u-dg  ((7’ -- TJQ-”l/”,  q/Q) , (C4)
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with Q again an inverse length  scale. ‘1’his  scaling form holds if tile critical exponent for the

specific heat at constant volume, a = 2 — dv is greatcl than zero, as it is in the case of the

simple gas-liquid critical point. ‘1’he resca]ing  of A is discussed in more detail in the next

Appendix.

Now, the two fields x(q) and y(q) are linear combillations  of the energy density e(q) and

the mass density p(q). specifically,  we assume

Y(q) = dq)  +“ BP(q) (C5a)

z(q) = ~c(q) + f5p(q). (C5b)

Substituting into llq. (Cl), we obtain the following free energy in p and c, to quadratic

order in the two densities:

F [c, p] = ~ [a(q)  c(q)c(–q)  + ~(q)c(cl)p(-q)  + c(!?)P(q)fl(---q)l  J (C6)
~

where

a(q) = r(q)ci2 + AT2 (C7a)

b(g) = 2r(q)~/3 +- 2A@ (C7b)

c(q) = r(q)/32  + A62. (C7C)

The cocfflcicnts  a(q), b(q), and c(q) are dominated by the contributions of A in the imme-

diate  vicinity of the critical point, as tllc  approach to zero of A is much gentler than that of

r(q).  11’bus, the sound velocity C, == 1/= vanishes as t@/2.

Thc behavior of the combination a(q) -- b(q)2/4c(q)  is anotllcr  Inattcr entirely. Using

Eqs. (C7):

++
r2a2@2 + Azy262 -t 2rA0/376

AT2 – -—--—-–- —---- --- ------
r~~ + A62

‘Pa+ow
This combination scales as r(q).
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APPENDIX D: RENORMALIZATION OF T13E COEFFICIENT A

In This Appendix, wc fill in the details of tllc renormalization of the coefilcient  A in t he

Ginzburg-l,andau  equation, 13q. (Cl). We start by introducing a field, h(q), conjugate to

the non-critical field x(q). The portion of the 1301tzrnann factor tlie exponent of which is

linear and quadratic in x(q) is

(e x p  - ~  Ax(q) z(-q) - V–l–
%mq,+.?q,=o )

~(ql)dq2)dq:J)  + X W44-d ,
~ q

Integrating over z(q), we obtain the following contribution to tllc Iloltzmann  factor,

prefactors to the exponential have been neglected

( h(q)h(-q)
exp ‘~ 4A–+;

)
~ h(q,)y(q,)y(q,,)  .

q ql+’’”+q3=o

(111)

where

(1)2)

The second term in the above exponent represents all encrg;y-like  coupling to the y(q) ’s.

Integrating out those variables, wc are left with the following quadratic term in the h(q)’s

h(q)h(-(q)v2Qd-2/u
—

4A2 )

where the quantity Q is an infrared momentum cutoff. There is,

tion to the 1301tznlann factor of the form

( h(q)h(-q)
Cxp ————

4A

Finally, wc r-e-introduce the variable

ew (-~ Zq~(q)x(-q)) and integrating

h(q)~~(–q) 2 d-2/u

)

— –—--—-— v Q .
4 A2

(1)3)

hcn  , a gaussian  contribu-

(1)4)

z(q) b y  multiplying  t h e  ]~oltznlann  f a c t o r  by

over h(q).  ‘1’ht’ result is the gaussian form

( Ax(q) x(–q)
exp —

1 + v2Qd--21u/A )

Now, if the critical exponent for the specific heat

(D5)

at constant  volume, o = 2 — dv is

greater than zero, then as Q ~ O

A renormalizes  to a non.zero value

the renorlnalized  cocfflcicnt  A val]ishcs  as Q2i”-d, whi le

ifa <O.
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FIGUIU3S

FIG. 1. Some graphical elements of the l%yman Diagrams for critical dynamics. a : The heat

diffusion propagator; b: The transverse velocity field prol)agator;  c: The “parametric” effect of

random linear accelerations on the transverse velocity fcld; d: The “pmamctric”  effect of random

rotations on the transverse velocity field

FIG. 2. One-loop correction to the thermal conductivity. The three-point vertices in the dia-

gram are generated by the convective term in the heat transport equation (Eq. (A8b))  and the

term ~~VC in 13q. (A8c).

FIG. 3. nscrtion  on the transverse velocity propagator line gcncratcd  by random rotations
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TAIIL13S

Definitions of the quantities appearing in the text, and tile scaling behavior of critical

thermodynamic functions and transport coefflcient,s. The quantity t is the reduced temperature,

t = (T – I:)/Tc. _ _ . .- =—. ——.— ——.—. -.—.

Quantity Definition

T. Critical temperature

Pc Critical mass density

[ Correlation length

()C1>=T @P Specific heat at

( )cv=T@v Specific heat at

constant

constant

pressure

volume

Isothermal compressibility

30

Dominant
.  .  —.—— .—.

0s = -+ (%+s Isentropic  compressibility ~i–va

K Thermal concluctivit.y Cii -uz~ b

nl Shear viscosity Wi — Ux,, t)

——_— ____
aref. [15]

brefs. [16,17,13,14]

scaling behavior (if any)

_—. ..-—_.. .

‘1’AIILE II. Relations between various exponents. d is the spatial climensiona]ity
—-———. ————— .

a= ’2-dva

X~+&1=4-d+qb
—-———————-—

aref. what?

brefs. [16,17,13,14]



‘1’A131.E 111. Numerical values  of some of the quantities that arc used irl the calculations relevant

to 311e. uncertainties are not recorded here but may be found in the cited references.-— _—— — —...—— —— .—..

Quantity Definition Value

u Specific heat exponent 0.63 a

q Anorr)alous  dimension exponent 0.0002 a

x~ q’herrnal conductivity exponent 0.916 b

Pc Critical density 0.042 g/cm3  c

kB 7; Critical temperature (in c.gs) 4.58 x 10-16 gcm2/sec2  c

~T=~ ‘1’hcrmal  diffusivity 1 CJ6 ~ 10–4 to.75 cmz/sec d

qs/Pc Sllcar viscosity 3{](J x 10-4 t-oow Cn~2/seC  e

~T isothermal compressibility 1.86 x 10-7t-l”18cmsec2/g  f

c, Velocity of sound (at low frequency) 3 . 2  x  104  i0057  cm/sec g

( Correlation length 2.56 x 10–8t–Om  cm g

c~, sl)ecilic neat at constant pressure 2.53 X 107t-1”18 ergs/g° K “
— —
aref.l

brefs.  [13,14]

Cref,  [18]

‘ref. [?]

e ref. [20]

‘ref. [21]

g re f. [22]

l’ref. [23]
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